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Motivation: RG irreversibility via entanglement

@ Quantum field theories flow under the RG from the UV to IR.

@ The number of effective degrees of freedom decreases during
the flow.

@ Irreversibility of RG:

@ (14 1)D: c-function (Zamolodchikov 1986).
@ (24 1)D: F-function (Casini-Huerta 2012).
@ (3 4 1)D: a-function (Cardy 1988, Komargodski-Schwimmer 2011).

@ These functions are monotonic along the RG flow.
@ The entanglement entropy (EE) provides a natural probe of d.o.f.

@ Can we compute ¢— and a—functions directly from the
entanglement entropy in specific QFTs?



What is entanglement entropy?

@ Consider a quantum mechanical system with many degrees of
freedom.

@ Assume it is in the ground state |¥) (pure state).
@ The density matrix of the total system is p = |¥)(¥|.
@ The von Neumann entropy Sy = —trpy log pior Vanishes.

@ Now divide the total system into subsystems A and B and
assume that B is inaccessible to A.

@ Trace out the part B of the Hilbert space in order to obtain the
reduced density matrix of A: py = trgpior-

@ The entropy S(A) = —trapa log pa is @ measure of the
entanglement between A and B.



Entanglement entropy in QFT

In quantum field theory:
@ Define an entangling surface (e.g. a sphere of radius R).
@ Divide space into two subsystems A and B.
@ S(A) measures quantum correlations across the boundary JA.
@ S(A) is dominated by short-distance (UV) modes near 0A.

Generic features:
@ Area law: S(A) ~ Area(0A)/ed=! + ..., with cutoff e.

@ Divergent terms = need subtractions or derivatives to extract
universal, physical information.

@ Universal subleading terms encode the effective degrees of
freedom of the QFT.
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Entanglement entropy as a probe of d.o.f. - flat space

Casini—Huerta, Phys.Lett. B600 (2004) 142-150
Casini—Teste—Torroba, Phys. Rev. Lett. 118, 261602 (2017)

Setup: Consider a QFT in its vacuum state and a

spherical entangling surface of radius R. JOT IO B
, .
@ S(R) is the EE between A and B. rA Y
U
o AS(R) = S(R) — Suv(R) “~_>’R

From first principles:
@ Poincaré invariance
@ Strong subadditivity (SSA)
@ Markov property of the vacuum

it has been argued that suitable combinations of
derivatives of AS(R) define monotonic functions that
match CFT charges at the fixed points:

(1+1)D: ¢(R) = RAS'(R), (3+1)D: a(R) = R* AS"(R)—RAS'(R).

R—0(UV): ¢ = cuv, a = auv; R— (IR) : ¢ = cr, a — ar.



Entanglement entropy in de Sitter space

Abate—Torroba, arXiv:2411.08961

Curved background (de Sitter):
@ Replace Minkowski space by de Sitter space.

@ Consider spherical regions in the static patch (bounded by a
cosmological horizon at R~H™").

@ Same ingredients: de Sitter invariance + SSA + Markov property.

The same expressions for ¢(R) and a(R) hold:
(1+1)D: ¢(R) = RAS'(R), (3+1)D: a(R) = R*AS"(R) — RAS'(R).

In general, for AS we subtract:
@ The contribution of the UV fixed point

@ Additional UV divergent terms, related to deformations of the
conformal theory (curvature, mass).

Note: In the (3+1)D case, it was shown that ayy > ar but the
monotonicity of a(R) is not proven.



Simplest case: free massive scalar field

We focus on a free massive scalar field theory in flat background.
@ The entropy can be computed explicitly (no interactions).

@ Simplicity allows for numerically testing entropic ¢- and
a-functions.

RG interpretation:
Turning on a mass u triggers a trivial flow:

@ In the deep UV the mass becomes irrelevant and we have one
massless degree of freedom (cyy = ayv = 1).

@ In the deep IR the massive field decouples and there are no
degrees of freedom (cgr = ar = 0).

Goal:

@ Compute S(u, R) numerically for given theory.

@ Use numerical derivatives to extract ¢(R) in (1 4+ 1)D and a(R) in
(34 1)D.
@ Check that they interpolate monotonically between 1 and 0.



From continuous to discrete
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We expand in spherical harmonics and impose Dirichlet BC:
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Coupling matrix:

Coupling matrix and wave function

m 1
€

g

o0e+1)
2

) O = i1 — Oit1y

The wave function that describes the modes of each (¢, m)-sector at
their ground state is a Gaussian state:

Q 1/4 .
\I/((bém) = (det ) efid)emﬂ d’m’
™

where Q = K'/2 and ¢} = [bom1, - - -

) d)ﬁm,N]-

We assume an entangling surface of radius R = (n+ 1) e
@ Subsystem A: oscillators 1 to n.
@ Subsystem C: oscillators n + 1 to N (complementary).



Numerical EE: correlation functions method

The entanglement entropy of Gaussian states can be calculated by
making use of correlation functions. (Sorkin 2012)
For every ¢, m:

@ Define the 2N x 2N matrix M = 2iJRe (M), where

= (mir ) o= (o)

@ The 2n x 2n block A of this matrix for subsystem A is

M=, )

A

@ Its eigenvalues come in pairs +); and satisfy |A;| > 1.
@ The entanglement entropy can be computed as

LS VINES D VINES ED VR D p |
Sem—g( 5 log = — = “o—log = )

where the sum is performed only over the positive eigenvalues.

Numerical method
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Numerical EE: finite size corrections

Lohmayer—Neuberger—Schwimmer-Theisen, Phys.Lett.B685:222-227,2010

(a) Finite-size effects (FSE)
@ We introduce an IR cutoff 1/L = 1/(Ne).
@ We determine the finite-size effects for every ¢ up to 220.
@ The FSE are captured by the expansion

= 8 ()
St Nop) = Seoolot) + 3 yoriain

@ We subtract the FSE by keeping S; oo (n).
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Numerical EE: / — oo and dependence on R, i

(b) Limit £ — o
@ We study the truncated sum

émax
Soo(n, M%fmax) = Z(% =+ I)Sf,oo(nvlj')
=0
as a function of /nax (fmax < 10°).
@ The sum behaves as

imax 1

Soo (13 bmax) = Soo (1) + >

20
1 gmax

A (ai(n, p) + bi(n, p1) In lmax)

@ We obtain the limit £nax — oo by keeping Soo (1, 11).

(c) Dependence on R = (n + 1) e and x (numerical fits)
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Theoretical expressions for EE
Results agree with theoretical expressions.
(1+1)D=¢=00of (3+1)D)

(3+1)D entropy
(Srednicki 1993, Solodukhin 2008, Hertzberg-Wilczek 2011)

R 1 R 1
55 In —+ — 12 R* In(pe) + Siin(1R)

S(u,R)=c G

Universal logarithmic term. Coefficient is related to the coefficient of
the A-type conformal anomaly.

(1+1)D entropy
(HoIzhey-Larsen-WiIczek 1994, Korepin 2004, Calabrese-Cardy 2004)

1. R
=—In—

g I~ + Sin(1R)

S(u,R)

Universal logarithmic term. Coefficient is proportional to the central
charge (¢ = 1) of the theory.

Numerical method 13/20



Adjusted expressions for c— and «—functions

@ The expressions that give the c— and a—functions through
derivatives of S(A) eliminate the divergent terms.

@ In the numerical procedure, there is no need to subtract UV
terms.

@ We make use of the independent variable x = uR (only
dimensionless parameter).

@ We adopt a specific normalization so that cyy = ayy = 1 and
cr = ar = 0, as x increases from 0 to oo, independently of .

(1+1)D (c-function)

‘ c(x) =6x8 (x, ) = 1 + 6x Sy (x) ‘

(3+1)D (a-function)

a(x) = —45 (x2 S"(x, 1) —x8'(x,p)) =1 —45 (xz in (x) — xS ()
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c-function: x - 0and x — oo

@ x=puR — 0:

Analytically we find

1

R 1 5
S(uR) = g lnz + — u*R? |:ln(,UR) +4— } 4.

6 6

which implies a smooth behaviour near 0:

c(x):l+2x2[lnx+*yfé]+~~ lim ¢(x) =

x—0

@ x = uR — oo:

We expect (deep IR, non-critical system)

1. R 1 1
S(uR) = 3 lnz % In(uR) = fgln(pe) lim ¢(x) =0

X— 00




c-function: numerical technicalities

For x — 0, we need 1 = ue — 0 to remove UV cutoff artifacts.
To do that:
@ We compute S(R) for several .
@ We perform numerical fits with z for fixed x = uR.
@ Take limit & — 0.
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c-function: results

The c-function interpolates between 1 and 0 monotonically.
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Figure: The c-function in terms of uR, along with the asymptotic expressions
for small and large uR.



No analytic expressions for x — 0 and x — oo. Same numerical

procedure.

a-function: results

The a-function interpolates between 1 and 0 monotonically.
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Prospects

1. F-functionin (2 +1)D

@ Replace intervals/balls ((1 + 1)D/(3 + 1)D) with disks in 2 4 1D
QFT.

@ Define an entropic F(R)-function from Sy (R) (related to a finite
term).

2. Extention to curved backgrounds (de Sitter):

@ Repeat the numerical analysis for free massive scalar in dS,
using appropriate coordinates.

@ Use entropic c—, F— and a—functions in dS and test
monotonicity beyond flat space.

3. Interacting theories and non-trivial fixed points:
@ Include interactions for non-trivial fixed points.
@ Compute entropic ¢c—, F—, and a-functions.



Thank you!
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