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Motivation: RG irreversibility via entanglement

Quantum field theories flow under the RG from the UV to IR.
The number of effective degrees of freedom decreases during
the flow.
Irreversibility of RG:

(1 + 1)D: c-function (Zamolodchikov 1986).
(2 + 1)D: F-function (Casini-Huerta 2012).
(3 + 1)D: a-function (Cardy 1988, Komargodski-Schwimmer 2011).

These functions are monotonic along the RG flow.

The entanglement entropy (EE) provides a natural probe of d.o.f.
Can we compute c− and a−functions directly from the
entanglement entropy in specific QFTs?
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What is entanglement entropy?

Consider a quantum mechanical system with many degrees of
freedom.
Assume it is in the ground state |Ψ⟩ (pure state).
The density matrix of the total system is ρtot = |Ψ⟩⟨Ψ|.
The von Neumann entropy Stot = −trρtot log ρtot vanishes.
Now divide the total system into subsystems A and B and
assume that B is inaccessible to A.
Trace out the part B of the Hilbert space in order to obtain the
reduced density matrix of A: ρA = trBρtot.
The entropy S(A) = −trAρA log ρA is a measure of the
entanglement between A and B.
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Entanglement entropy in QFT

In quantum field theory:
Define an entangling surface (e.g. a sphere of radius R).
Divide space into two subsystems A and B.
S(A) measures quantum correlations across the boundary ∂A.
S(A) is dominated by short-distance (UV) modes near ∂A.

Generic features:
Area law: S(A) ∼ Area(∂A)/ϵd−1 + . . . , with cutoff ϵ.
Divergent terms ⇒ need subtractions or derivatives to extract
universal, physical information.
Universal subleading terms encode the effective degrees of
freedom of the QFT.
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Entanglement entropy as a probe of d.o.f. - flat space

Casini–Huerta, Phys.Lett. B600 (2004) 142-150

Casini–Teste–Torroba, Phys. Rev. Lett. 118, 261602 (2017)

Setup: Consider a QFT in its vacuum state and a
spherical entangling surface of radius R.

S(R) is the EE between A and B.

∆S(R) = S(R)− SUV(R)

From first principles:

Poincaré invariance

Strong subadditivity (SSA)

Markov property of the vacuum

it has been argued that suitable combinations of
derivatives of ∆S(R) define monotonic functions that
match CFT charges at the fixed points:

(1+1)D: c(R) = R∆S ′(R), (3+1)D: a(R) = R2 ∆S ′′(R)−R∆S ′(R).

R→0 (UV) : c → cUV, a → aUV; R→∞ (IR) : c → cIR, a → aIR.

A

R

B
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Entanglement entropy in de Sitter space

Abate–Torroba, arXiv:2411.08961

Curved background (de Sitter):
Replace Minkowski space by de Sitter space.
Consider spherical regions in the static patch (bounded by a
cosmological horizon at R∼H−1).
Same ingredients: de Sitter invariance + SSA + Markov property.

The same expressions for c(R) and a(R) hold:

(1+1)D: c(R) = R∆S ′(R), (3+1)D: a(R) = R2 ∆S ′′(R)− R∆S ′(R).

In general, for ∆S we subtract:
The contribution of the UV fixed point
Additional UV divergent terms, related to deformations of the
conformal theory (curvature, mass).

Note: In the (3+1)D case, it was shown that aUV > aIR but the
monotonicity of a(R) is not proven.
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Simplest case: free massive scalar field

We focus on a free massive scalar field theory in flat background.
The entropy can be computed explicitly (no interactions).
Simplicity allows for numerically testing entropic c- and
a-functions.

RG interpretation:
Turning on a mass µ triggers a trivial flow:

In the deep UV the mass becomes irrelevant and we have one
massless degree of freedom (cUV = aUV = 1).
In the deep IR the massive field decouples and there are no
degrees of freedom (cIR = aIR = 0).

Goal:
Compute S(µ,R) numerically for given theory.
Use numerical derivatives to extract c(R) in (1 + 1)D and a(R) in
(3 + 1)D.
Check that they interpolate monotonically between 1 and 0.
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From continuous to discrete

(3 + 1)D: H =
1
2

∫
d3x

[
π2 + (∇ϕ)2 + µ2ϕ2

]
We expand in spherical harmonics and impose Dirichlet BC:

ϕ(x) =
∑
ℓ,m

ϕℓm(r)
r

Yℓm(Ω), π(x) =
∑
ℓ,m

πℓm(r)
r

Yℓm(Ω),

H =
∑
ℓ,m

Hℓm, Hℓm =
1
2

∫ ∞

0
dr

[
π2
ℓm + (∂rϕℓm)

2 +

(
ℓ(ℓ+ 1)

r2 + µ2
)
ϕ2
ℓm

]
.

We discretize the radial coordinate ri = ϵi with i = 1, . . . ,N:

ϕℓm(r) → 1√
ϵ
ϕℓm,i, πℓm(r) → 1√

ϵ
πℓm,i,

Hℓm =
1
2

N∑
i=1

π2
ℓm,i +

N∑
j=1

ϕℓm,iK
(ℓm)
ij ϕℓm,j


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Coupling matrix and wave function

Coupling matrix:

K(ℓm)
ij =

1
ϵ2

[(
2 + µ2ϵ2 +

ℓ(ℓ+ 1)
i2

)
δij − δi,j+1 − δi+1,j

]

The wave function that describes the modes of each (ℓ,m)-sector at
their ground state is a Gaussian state:

Ψ(ϕℓm) =

(
det

Ω

π

)1/4

e−
1
2 ϕ

T
ℓmΩϕℓm ,

where Ω = K1/2 and ϕT
ℓm = [ϕℓm,1, . . . , ϕℓm,N ].

We assume an entangling surface of radius R =
(
n + 1

2

)
ϵ:

Subsystem A: oscillators 1 to n.
Subsystem C: oscillators n + 1 to N (complementary).
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Numerical EE: correlation functions method

The entanglement entropy of Gaussian states can be calculated by
making use of correlation functions. (Sorkin 2012)
For every ℓ,m:

Define the 2N × 2N matrix M = 2iJRe (M), where

M =

(
⟨ϕiϕj⟩ ⟨ϕiπj⟩
⟨ϕiπj⟩T ⟨πiπj⟩

)
, J =

(
0 I
−I 0

)
.

The 2n × 2n block A of this matrix for subsystem A is

MA = i
(

0 (Ω)A
−
(
Ω−1

)
A 0

)
.

Its eigenvalues come in pairs ±λi and satisfy |λi| ≥ 1.
The entanglement entropy can be computed as

Sℓm =

n∑
i=0

(
λi + 1

2
log

λi + 1
2

− λi − 1
2

log
λi − 1

2

)
,

where the sum is performed only over the positive eigenvalues.
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Numerical EE: finite size corrections

Lohmayer–Neuberger–Schwimmer-Theisen, Phys.Lett.B685:222-227,2010

(a) Finite-size effects (FSE)
We introduce an IR cutoff 1/L = 1/(Nϵ).
We determine the finite-size effects for every ℓ up to 220.
The FSE are captured by the expansion

Sℓ(n,N, µ) = Sℓ,∞(n, µ) +
kmax∑
k=0

S(k)
ℓ (n, µ)

N(2ℓ+2+k) ,

We subtract the FSE by keeping Sℓ,∞(n).
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Numerical EE: ℓ → ∞ and dependence on R, µ

(b) Limit ℓ → ∞
We study the truncated sum

S∞(n, µ; ℓmax) =

ℓmax∑
ℓ=0

(2ℓ+ 1)Sℓ,∞(n, µ)

as a function of ℓmax (ℓmax ≤ 106).
The sum behaves as

S∞(n, µ; ℓmax) = S∞(n, µ) +
imax∑
i=1

1
ℓ2i

max
(ai(n, µ) + bi(n, µ) ln ℓmax)

We obtain the limit ℓmax → ∞ by keeping S∞(n, µ).

(c) Dependence on R =
(
n + 1

2

)
ϵ and µ (numerical fits)
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Theoretical expressions for EE

Results agree with theoretical expressions.
((1 + 1)D ≡ ℓ = 0 of (3 + 1)D)

(3+1)D entropy
(Srednicki 1993, Solodukhin 2008, Hertzberg-Wilczek 2011)

S(µ,R) = c
R2

ϵ2 − 1
90

ln
R
ϵ
+

1
6
µ2R2 ln(µϵ) + Sfin(µR)

Universal logarithmic term. Coefficient is related to the coefficient of
the A-type conformal anomaly.

(1+1)D entropy
(Holzhey-Larsen-Wilczek 1994, Korepin 2004, Calabrese-Cardy 2004)

S(µ,R) =
1
6
ln

R
ϵ
+ Sfin(µR)

Universal logarithmic term. Coefficient is proportional to the central
charge (c = 1) of the theory.
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Adjusted expressions for c− and a−functions

The expressions that give the c− and a−functions through
derivatives of S(A) eliminate the divergent terms.
In the numerical procedure, there is no need to subtract UV
terms.
We make use of the independent variable x = µR (only
dimensionless parameter).
We adopt a specific normalization so that cUV = aUV = 1 and
cIR = aIR = 0, as x increases from 0 to ∞, independently of µ.

(1+1)D (c-function)

c(x) = 6xS ′(x, µ) = 1 + 6x S ′
fin(x)

(3+1)D (a-function)

a(x) = −45
(
x2 S ′′(x, µ)− xS ′(x, µ)

)
= 1 − 45

(
x2S ′′

fin(x)− xS ′
fin(x)

)
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c-function: x → 0 and x → ∞

x = µR → 0:

Analytically we find

S(µR) =
1
6
ln

R
ϵ
+

1
6
µ2R2

[
ln(µR) + γ − 5

6

]
+ · · ·

which implies a smooth behaviour near 0:

c(x) = 1 + 2x2[ln x + γ − 1
3

]
+ · · · lim

x→0
c(x) = 1

x = µR → ∞:

We expect (deep IR, non-critical system)

S(µR) =
1
6
ln

R
ϵ
− 1

6
ln(µR) = −1

6
ln(µϵ) lim

x→∞
c(x) = 0
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c-function: numerical technicalities

For x → 0, we need µ̄ = µϵ → 0 to remove UV cutoff artifacts.
To do that:

We compute S(R) for several µ̄.
We perform numerical fits with µ̄ for fixed x = µR.
Take limit µ̄ → 0.
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c-function: results

The c-function interpolates between 1 and 0 monotonically.

1 2 3 4

-0.15

-0.10

-0.05

Figure: The c-function in terms of µR, along with the asymptotic expressions
for small and large µR.
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a-function: results

No analytic expressions for x → 0 and x → ∞. Same numerical
procedure.

The a-function interpolates between 1 and 0 monotonically.
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Prospects

1. F-function in (2 + 1)D
Replace intervals/balls ((1 + 1)D/(3 + 1)D) with disks in 2 + 1D
QFT.
Define an entropic F(R)-function from Sdisk(R) (related to a finite
term).

2. Extention to curved backgrounds (de Sitter):
Repeat the numerical analysis for free massive scalar in dS,
using appropriate coordinates.
Use entropic c−, F− and a−functions in dS and test
monotonicity beyond flat space.

3. Interacting theories and non-trivial fixed points:
Include interactions for non-trivial fixed points.
Compute entropic c−, F−, and a-functions.
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Thank you!
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